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1. Introduction is expanded as 

Ratio estimators are used to in- 
crease the reliability of the sample 
estimates. For each sampled unit an 
auxiliary variate, x, is observed in 
addition to the variate of interest, y, 

so that for each unit a pair (y,x) is 
obtained. From a random sample of n 
pairs (yi,xi) = 1,2,...n a common 
survey problem is the estimation of popu- 
lation mean, 4, subject to the assumption 
that the population mean is known 
exactly. Ratio estimators are designed 
to utilize this information and the most 
common ratio estimator of is = (ÿ /x)X, 
which is generally biased. A study of 
certain statistical properties of the 
ratio -of- sample -means estimator of is 
the main interest of this paper. 

The sampling variance of depends 
upon the sampling variance of y/x for 
which there is no known exact expression 
An approximation to this sampling vari- 
ance, obtained by the use of a Taylor 
expansion, is well -known and can be found 
in most textbooks. A sample variance is 
usually formed by substituting sample 
expressions for the population quantities 
which appear in the sampling variance 
approximation. For large samples, the 
relationship between this sampling 
variance approximation and the sample 
variance thus obtained has been examined 
analytically and a relatively clear 
picture of the situation obtained. For 
small samples, the relationship is not so 
clear; nor is the relationship between 
the sampling variance approximation and 
the exact sampling variance. Unfortunate- 
ly, these questions do not lend themselves 
to simple and productive analytic study 
and so this paper presents some Monte 
Carlo results for the sample sizes 
n = 2(1)9. 

2. The Ratio Estimator Approximations 

2.1 The Bias 

Approximations to both the bias and 
sampling variance of ÿ/x can be found by 
the use of Taylor expansions. If the 
negative exponent of the identity 

where 
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1 

dÿ = 5-1 and = 

(1) 
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k 

X 
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(2) 

then a first approximation to the bias is 

where 

and 

Biasl((/ 
= 

(3) 

denotes Cov(ÿ,x)/X 

denotes 

The expansion of Equation (2) is valid for 

< 1 and terms up to the second order 

have been retained to obtain Equation (3). 

2.2 The Variance 

The variance of is, by 
definition, 

V(y /x) = E(5/x)2 - [E(5/x))2, 

and it is convenient to consider the two 
terms on the right -hand side separately. 
Squaring both sides of Equation (1) and 
using the expansion, 

)-2 (-1)k(k+l)(X (5) 
k=0 

the second order approximation to E(ÿ /x)2 
is obtained as, 

E(2) 

2 
= (1 + - + Cÿÿ). (6) 

Next, squaring ET, expanding,and drop- 
ping third and higher order terms gives 

2 

[E(ÿ = (1 + - 2C5x), (7) 

so that subtraction from Equation((6)) 
yields a first approximation to V x as 

2 

V1(5/50 = (Cÿÿ + - (8) 
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The large sample variance of can then be 
written as, 

V1(ÿ) = 2(Cyy + Cxx - 2Cyx). (9) 

These large sample approximations to the 
bias and variance of y are those usually 
found in the literature, [1,3], and seem 
to hold for large n, see for example, 
Cochran, [1, p. 114]. 

An approximation to the mean square 
error can be found by the same procedure, 
see Kish [3] and Sukhatme [5]. 

as, 

where 

The approximation V1 can be written 

= v(y 

Q 

This suggests the sample estimate, 

n 
1 2 

n(n -1) (yi -qxi) , 

i =1 

with 

(10) 

(11) 

q = 

This sample estimator v1(7) has a bias of 
order 0(n-1), [1, p. 119]. 

3. Small Sample Estimation 

When the sample size is large, the 
approximations described in Section 2 
have good accuracy, and it is not neces- 
sary to bring in the higher moments by 
inclusion of more terms in the expansions. 
With small samples however, the approxi- 
mations do not always have a known 
accuracy and it is natural to consider 
improving the estimates by including some 
higher order terms. 

By expanding Equation (2) up to 
fourth order terms, second approxima- 
tion to the bias of y is obtained as, 

Bias2 = Biasl() + - 

X 
(12) 

where Ors = 

A second approximation to the 
variance can be found by expanding 
Equation (5) up to fourth order terms 
and again treating each term of Equation 
(4) separately. This gives the following 
euation as a second approximation to 

2 
2 v2(ÿ) = v1() + 433 - 

3 21 3422 

(13) 

In the Monte Carlo results presented in 
Section 4, y is generated as a linear 
function of x and so the consideration of 
some of the results when y is a linear 
function of x, is of interest. In this 
case, y = A +Bx, Equation (12) becomes 

Bias () (14) 
2 

where the moments of about are denoted 
with a single subscript, i.e. 

= Br4r+s In terms of the moments of 

xi about the mean,_ 

A42(x) 

1 A -413(x) 414(x) 3(n- 1)4(x) 

-3 

Bias2(7) 

(15) 

where on the first term on the right is 
Bias1(7) and the second term is 0(n-2). 

In this case of a linear relation- 
ship between y and x, the difference 
between the two approximations to the 
variance is, 

v2 -1(7) = V2() - V1() 

243 
+ (16 ) 

which in terms of the moments of about 
the mean is 

= 
A 

+ 

4(X) 

(17) 



This difference is positive in symmetric 
populations and is also 0(n-2). 

It should be noted that both the bias 
and the variance are direct functions of 
the y intercept, A, so that if A = 
is exactly unbiased and V1(7) = V2(ÿ) = O. 
This is true for any sample size. If y 
is a nonlinear function f x, say quad- 
ratic, yi A + Bxi + Cx, then the bias 
and variance of are affected not only 
by the y- intercept A, but also by the non- 
linear coefficient, C. Then, even if 
A = 0, neither the bias nor the variance 
vanishes. 

A higher order approximation to the 
mean square error can be obtained by 
combining the identity, 

- = + -2' 

with the expansion of Equation (5) and 
including terms up to the fourth order. 
This gives, 

MSE2(y) = E(5/2-Q)2 

203 

(18) 
which is an expression that appears in 
Kish [3] and Sukhatme ]. The 
difference between V2(y) and MSE2(7) is 

V(7) MSE (ÿ) = - 
2 402 2 (19) 

2 2 

which is the square of the estimate of 
bias obtained in Equation (3), and, since 

411 P 

V2() - MSE2(7) - 
120_2(c_ 

- (20) 

which is always negative and becomes 
negligible for large n. 

Finally, ,when y and x are bivariate 
normal, MSE2y) reduces to, 

V1(7)(1 + 6 Biasi(ÿ). (21) 

The sample estimate v2(7) of V2(7) 
is obtained by estimating each term of 
Equation (13) from the sample. Similarly, 
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an estimate mse(ÿ of MSE(ÿ) can be found 
from Equation (18), or, if y and x are 
bivariate normal, from Equation (21). 

Recently, estimators which reduce 
bias have been constructed by splitting 
up samples, see Quenouille [4]. Tukey 
[6] later discussed the split- sample pro- 
cedure from the point of view of ease in 
variance computations. The method consists 
of constructing estimates , 

i = 1,2,...n, based on all but the ith 
observation and then forming 

q(i) = nq - n-1 q(1), (22) 

where q is the estimator based on all the 
observations. The estimator 

i=1 
qZi)/n, (23) 

then has a sample variance given approxi- 
mately by, 

v(q*) = 

1=1 

Thus in the case of the ratio -of- 
means estimator 

j=1 
q(1) n 

x-xi 

, 

(24) 

(25) 

1=1 

q /x, and an estimator of is given 
by = q *X, with an approximate sample 
variance given by, 

n 

v(*) = n 2. (26) 

1 =1 

4. Monte Carlo Study 

To examine the problem of variance 
estimation for small sample sizes, 
random samples of size n = 2(1)9 were 
drawn from a population of fifty thousand 
pairs (y,x). The ratio ÿ/x was used as 
an estimator of but the results can 
be applied directly to y. 

It is a very large undertaking to 
draw all possible samples for a given 
sample size so instead one thousand 
samples were drawn from the population 
and q computed for each. The 
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variance of the one thousand q's should be 
a close approximation to the true sampling 
variance. The split -sample estimator q* 
was found as well as q the four variance 
estimators v1(q), v2(q), mse2(q), and 
v(q *) were also calculated for each sample. 

A population of fifty thousand pairs, 
(yi,x0, was constructed with xi N[10,4), 
and yi defined as 5(x +ei) where ei is a 
random error distributed as standard 
normal independently of xi, y is there- 
fore N[50,125), and the correlation 
between y and x is .89. 

Normal probability plots were made 
of the one thousand sample estimates of 
q and q The first three figures show 
the plots of q for sample sizes 3, 6 and 
9. The figure numbers in all the plots 
correspond to sample sizes. These plots 
show that even for small sample sizes the 
ratio ÿ/x is essentially normal when the 
original y and x populations are normal. 
The indications of the probability plots 
of q* were the same as those for q. 

Table 1 gives the mean and variance 
of the sampling distributions of q and q* 
for the different sample sizes. The 
expected values are essentially the same, 
but the precision of q seems to increase 
over that of q* as n decreases. 

TABLE 1 

Mean and Variance of 
q and q* for Small 

q 

n Mean Variance 

1000 Samples of 
Sample Size n 

q* 
Mean Variance 

2 4.9975 .1235 5.0000 .1481 
3 4.9889 .0896 4.9887 .0915 
4 4.9971 .0623 4.9967 .0622 
5 4.9928 .0497 4.9930 .0507 
6 5.0055 .0421 5.0053 .0433 
7 4.9932 .0367 4.9933 .0366 
8 5.0041 .0300 5.0043 .0323 
9 5.0026 .0275 5.0026 .0288 

Histograms to summarize the distri- 
butions were made for each of the four 
estimators of variance. The next three 
plots show the histograms of the first 
approximation v(q) for sample sizes 3, 
5 and 9. The histograms for v2(q), 

mse2(q) and v(q *) were similar. As the 
sample size increases, the distribution 
of the variance becomes less skewed. 
This behavior is similar to that of the 
gamma distribution for increasing values 
of the shape parameter. 

A plotting technique similar to 
normal plotting has been designed for the 
gamma distribution [7]. This technique 
can be used to determine whether a random 
sample of observations come from a gamma 

distribution; if the distribution is 
gamma, the points will yield a straight 
line configuration. 

Gamma plots were made of vl(q) for 
each sample size, and the last three 
plots for n = 3, 6 and 9, show that even 
for small sample sizes it is not unreason- 
able to assume that the distribution of the 
estimate of variance of q is chi -square. 

The mean and variance of the 
sampling distributions of the four 
estimators of V(q) are given in Tables 
2a and 2b. 

TABLE 2a 

Mean of 1000 Samples of the Estimates of V(q) 
for Small Sample Size: x Distribution Normal 

n v1(q) v2(q) mse(q) v(q*) V(y/x) 

2 .1285 .1394 .1550 .1481 .1235 
3 .0853 .0892 .0927 .0915 .0896 
4 .0607 .0620 .0636 .0622 .0623 
5 .0490 .0498 .0509 .0507 .0497 
6 .0424 .0428 .0436 .0433 .0421 
7 .0354 .0356 .0362 .0366 .0367 
8 .0318 .0320 .0324 .0323 .0300 
9 .0283 .0284 .0287 .0288 .0275 

TABLE 2b 

Variance of 1000 Samples of the Estimates of V(q) 
for Small Sample Size: x Distribution Normal 

v1(g) v2(q) mse(q) v(q*) 

2 .0317 .0392 .0472 .0488 
3 .0072 .0080 .0088 .0096 
4 .0025 .0026 .0028 .0027 
5 .0014 .0014 .0015 .0017 
6 .0007 .0007 .0007 .0008 
7 .0004 .0004 .0004 .0005 
8 .0003 .0003 .0003 .0003 
9 .0002 .0002 .0002 .0002 

Some improvement over vi(q) might be 
achieved by using v2(q) or v(q *). The 
mean of the one thousand v2(q)'s is 
closer than vi(q) to the true variance 
for n = 3,4,5, and 7; the mean of the 
v(q *) is closer for n = 3,4 and 7. How- 
ever, the precision of v1(q) is never less 
than the precision of any other estimator, 
and for n = 2,3 and 4, the precision of 
v1(q) is actually greater. 

Thus, when y and x are normally 
distributed ÿ/x and the first approxi- 
mation q), are good estimators of /X 
and V(ÿ /x() respectively. Any improvement 
in estimating the true variance by v2(q) 
or v(q *) will most likely not warrant 



the extra computational difficulty, in 
this case. 

In order to examine the behavior of 
the variance of q for non -normal popula- 
tions, a second study was made similar to 
the first. Here, x was chi- square with 2 
degrees of freedom, and a constant added 
such that E(x) = 12, V(x) 4 y was 
defined as before so that E(y) = 60, 
V(y) = 125. The correlation between y and 
x was again equal to .89. For this popu- 
lation also q was an unbiased estimator 
of the population ratio. 

precision is much greater than the other 
estimators. 

The normal plots, gamma plots and 
histograms were similar in behavior to 
those of the first study. 

The maximum observations of v1(q) 
and v(q *) are given in Table 4; the 
minimum values were approximately equal. 

TABLE 4 

Tables 
variance of 
for each sample 

3a and 3b give 
the four estimators 

size. 

TABLE 3a 

the mean and 
of V(q) 

Largest Observation From the Distributions of 
vl(q) and v(q *) for Small Sample Sizes: 

x Distribution Exponential 

Maximum v1(q) Maximum v(q *) 

2 1.1249 .5282 

Mean of 1000 Samples of the Estimates of V(q) 
for Small Sample Size n: x Distribution Exponential 

3 .6689 .3385 
4 .4256 .2000 
5 .2358 .1254 

v1(q) v2(q) mse(q) v(q*) 
6 .1772 .0922 

.0697 
8 .1128 .0670 

2 .1096 .1134 .1143 .0728 .0734 9 .0912 .0526 

3 .0769 .0777 .0780 .0527 .0541 
4 .0561 .0562 .0563 .0393 .0399 
5 .0460 .0460 .0460 .0318 .0327 Table 4 shows that the spread of 
6 .0402 .0401 .0402 .0281 .0277 vl(q) is nearly twice that of v(q *) but 
7 .0336 .0336 .0336 .0235 .0240 aside from this the distributions of the 
8 .0306 .0305 .0305 .0214 .0204 four estimators of the true variance are 
9 .0272 .0271 .0271 .0190 .0182 approximately the same, specifically, 

TABLE 3b 

Variance of 1000 Samples of the Estimates of V(q) 
for Small Sample Size n: x Distribution Exponential 

n v1(q) y2(q) mse(q) v(q*) 

2 .0245 .0263 .0268 .0084 
3 .0063 .0065 .0066 .0023 
4 .0023 .0023 .0023 .0009 
5 .0013 .0013 .0013 .0005 
6 .0006 .0006 .0006 .0003 
7 .0004 .0004 .0004 .00015 
8 .0003 .0003 .0003 .0001 
9 .0002 .0002 .0002 .00007 

In this case the estimators 
v2(q) and mse2(q) all lead to serious 
overestimates of the true variance. The 
means of these three estimators are about 
equal. The ratio of vi(q) to the true 
variance varies about 1.5 and the two 
estimators v2(q) nd mse2(q) are actually 
worse than v1(q) for n = 2,3,4; for 
n 8 and 9 It appears that they may 
begin to improve over v1(q). The pre- 
cision of these three estimators is 
approximately the same. However, the 
mean of v(q *) is consistently near the 
true value of the variance and its 

chi -square, even when the original distri- 
butions are badly skewed. 

From the results of these two studies, 
it may be inferred that the bias of the 
estimator v1(q) is dependent upon the 
degree of skewness of the original y and 
x populations. Estimates of the true 
variance taken from higher order approxi- 
mations lead only to slight improvements 
over the second order approximation vl(q), 
and in some cases the estimate is 
actually worse. The precision of v(q *) 
is nearly double that of vl(q) for 
exponential x distributions and the bias 
of v(q *) is smaller than that of vl(q). 

Thus it appears that the split -sample 
estimator q* may be definitely preferable 
to q in some situations. 

Computations in the Monte -Carlo 
study were done on the IBM 7090 computer 
at Bell Telephone Laboratories in Murray 
Hill. Plots were drawn by the Stromberg- 
Carlson 4020 microfilm printer using 
output from the 7090. 
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